PrimPol Bypasses UV Photoproducts during Eukaryotic Chromosomal DNA Replication

نویسندگان

  • Julie Bianchi
  • Sean G. Rudd
  • Stanislaw K. Jozwiakowski
  • Laura J. Bailey
  • Violetta Soura
  • Elaine Taylor
  • Irena Stevanovic
  • Andrew J. Green
  • Travis H. Stracker
  • Howard D. Lindsay
  • Aidan J. Doherty
چکیده

DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) light-damaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol η-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PrimPol—Prime Time to Reprime

The complex molecular machines responsible for genome replication encounter many obstacles during their progression along DNA. Tolerance of these obstructions is critical for efficient and timely genome duplication. In recent years, primase-polymerase (PrimPol) has emerged as a new player involved in maintaining eukaryotic replication fork progression. This versatile replicative enzyme, a membe...

متن کامل

PrimPol—A new polymerase on the block

The DNA-directed primase-polymerase PrimPol of the archaeo-eukaryotic primase superfamily represents an ancient solution to the many problems faced during genome duplication. This versatile enzyme is capable of initiating de novo DNA/RNA synthesis, DNA chain elongation, and has the capacity to bypass modifications that stall the replisome by trans-lesion synthesis or origin-independent re-primi...

متن کامل

PrimPol-deficient cells exhibit a pronounced G2 checkpoint response following UV damage

PrimPol is a recently identified member of the archaeo-eukaryote primase (AEP) family of primase-polymerases. It has been shown that this mitochondrial and nuclear localized enzyme plays roles in the maintenance of both unperturbed replication fork progression and in the bypass of lesions after DNA damage. Here, we utilized an avian (DT40) knockout cell line to further study the consequences of...

متن کامل

Molecular dissection of the domain architecture and catalytic activities of human PrimPol

PrimPol is a primase-polymerase involved in nuclear and mitochondrial DNA replication in eukaryotic cells. Although PrimPol is predicted to possess an archaeo-eukaryotic primase and a UL52-like zinc finger domain, the role of these domains has not been established. Here, we report that the proposed zinc finger domain of human PrimPol binds zinc ions and is essential for maintaining primase acti...

متن کامل

Kinetic Analysis of Human PrimPol DNA Polymerase Activity Reveals a Generally Error-Prone Enzyme Capable of Accurately Bypassing 7,8-Dihydro-8-oxo-2′-deoxyguanosine

Recent studies have identified human PrimPol as a new RNA/DNA primase and translesion DNA synthesis polymerase (TLS pol) that contributes to nuclear and mitochondrial DNA replication. We investigated the mechanism of PrimPol polymerase activity on both undamaged and damaged DNA substrates. With Mg²⁺ as a cofactor, PrimPol binds primer-template DNA with low affinity K(d,DNA) values (∼200-1200 nM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2013